Ruang vektor

Dari testwiki
Loncat ke navigasi Loncat ke pencarian

Templat:Short description Templat:Distinguish Templat:About

Penjumlahan vektor dan perkalian skalar: Sebuah vektor v (biru) ditambahkan ke vektor lain w (merah, ilustrasi atas). Di bawah, w diregangkan dengan faktor 2, menghasilkan jumlah Templat:Nowrap.

Ruang vektor adalah struktur matematika yang dibentuk oleh sekumpulan vektor, yaitu objek yang dapat dijumlahkan dan dikalikan dengan suatu bilangan, yang dinamakan skalar. Skalar sering adalah bilangan riil, tetapi kita juga dapat merumuskan ruang vektor dengan perkalian skalar dengan bilangan kompleks, bilangan rasional, atau bahkan medan. Operasi penjumlahan dan perkalian vektor mesti memenuhi persyaratan tertentu yang dinamakan aksioma. Contoh ruang vektor adalah vektor Euklides yang sering digunakan untuk melambangkan besaran fisika seperti gaya. Dua gaya dengan jenis sama dapat dijumlahkan untuk menghasilkan gaya ketiga, dan perkalian vektor gaya dengan bilangan riil adalah vektor gaya lain. Vektor yang melambangkan perpindahan pada bidang atau pada ruang tiga dimensi juga membentuk ruang vektor.

Ruang vektor merupakan subjek dari aljabar linear, dan dipahami dengan baik dari sudut pandang ini, karena ruang vektor dicirikan oleh dimensinya, yang menspesifikasikan banyaknya arah independen dalam ruang. Teori ruang vektor juga ditingkatkan dengan memperkenalkan struktur tambahan, seperti norma atau hasilkali dalam. Ruang seperti ini muncul dengan alamiah dalam analisis matematika, dalam bentuk ruang fungsi berdimensi takhingga, dengan vektornya adalah fungsi.

Secara historis, gagasan awal yang berbuah pada konsep ruang vektor dapat dilacak dari geometri analitik abad ke-17, matriks, sistem persamaan linear, dan vektor Euklides. Pembahasan modern yang lebih abstrak pertama kali dirumuskan oleh Giuseppe Peano pada akhir abad ke-19, yang meliput objek lebih umum daripada ruang Euklides, namun kebanyakan teori tersebut dapat dipandang sebagai perluasan gagasan geometri klasik seperti garis, bidang, dan analognya yang berdimensi lebih tinggi.

Saat ini, ruang vektor diterapkan di seluruh bidang matematika, sains dan rekayasa. Ruang vektor adalah konsep aljabar linear yang sesuai untuk menghadapi sistem persamaan linear, menawarkan kerangka kerja untuk deret Fourier (yang digunakan dalam pemampatan citra), atau menyediakan lingkungan yang dapat digunakan untuk teknik solusi persamaan diferensial parsial. Lebih jauh lagi, ruang vektor memberikan cara abstrak dan bebas koordinat untuk berurusan dengan objek geometris dan fisis seperti tensor. Pada gilirannya ini memungkinkan pemeriksaan sifat lokal manifold menggunakan teknik pelinearan. Ruang vektor dapat dirampatkan ke beberapa arah, dan menghasilkan konsep lebih lanjut dalam geometri dan aljabar abstrak.

Pendahuluan dan definisi

Konsep ruang vektor pertama-tama akan dijelaskan dengan menjelaskan dua contoh khusus:

Contoh pertama: panah suatu bidang

Contoh pertama ruang vektor terdiri dari panah dalam bidang tetap, dimulai dari satu titik tetap. Ini digunakan dalam fisika untuk menjelaskan gaya s atau kecepatan. Diberikan dua panah seperti, Templat:Math dan Templat:Math, jajaran genjang yang direntang oleh dua panah ini berisi satu panah diagonal yang juga dimulai dari titik awal. Panah baru ini disebut jumlah dari dua panah, dan dilambangkan Templat:Math.[1] Dalam kasus khusus dari dua anak panah pada garis yang sama, jumlahnya adalah panah pada garis ini yang panjangnya adalah jumlah atau perbedaan panjangnya, tergantung pada apakah panah tersebut memiliki arah yang sama. Operasi lain yang dapat dilakukan dengan panah adalah penskalaan: diberikan bilangan riil Templat:Math positif, panah yang searah dengan Templat:Math, tetapi dilatasi atau dikecilkan dengan mengalikan panjangnya dengan Templat:Math, disebut perkalian dari Templat:Math dengan Templat:Math. Itu dilambangkan Templat:Math. Jika Templat:Math negatif, Templat:Math didefinisikan sebagai panah yang menunjuk ke arah yang berlawanan.

Berikut ini adalah beberapa contoh: jika Templat:Math, vektor yang dihasilkan Templat:Math memiliki arah yang sama dengan Templat:Math, tetapi direntangkan menjadi dua kali lipat panjang Templat:Math (gambar kanan bawah). Sama halnya, Templat:Math adalah jumlah Templat:Math. Bahkan, Templat:Math memiliki arah berlawanan dan panjang yang sama Templat:Math (vektor biru menunjuk ke bawah pada gambar kanan).

Penjumlahan vektor: jumlah Templat:Math (hitam) dari vektor Templat:Math (biru) dan Templat:Math (merah) ditampilkan. Perkalian skalar: kelipatannya Templat:Math dan Templat:Math ditampilkan.

Contoh kedua: pasangan angka yang diurutkan

Contoh kunci kedua dari ruang vektor disediakan oleh pasangan bilangan riil Templat:Math dan Templat:Math. (Urutan komponen Templat:Math dan Templat:Math signifikan, sehingga pasangan seperti itu juga disebut pasangan terurut.) Pasangan seperti itu ditulis sebagai Templat:Math. Penjumlahan dari dua pasangan tersebut dan perkalian pasangan dengan bilangan didefinisikan sebagai berikut:

(x1,y1)+(x2,y2)=(x1+x2,y1+y2)

dan

a(x,y)=(ax,ay) .

Contoh pertama di atas berkurang menjadi yang satu ini, jika panah diwakili oleh pasangan koordinat Kartesius dari titik ujungnya.

Definisi

Dalam artikel ini, vektor direpresentasikan dengan huruf tebal untuk membedakannya dari skalar.[nb 1]

Sebuah ruang vektor di atas bidang Templat:Mvar adalah himpunan Templat:Mvar bersama dengan dua operasi yang memenuhi delapan aksioma tercantum di bawah ini. Berikut ini, Templat:Math menunjukkan produk Cartesian dari Templat:Math dengan dirinya sendiri, dan Templat:Math menunjukkan pemetaan dari satu himpunan ke himpunan lainnya.

Elemen Templat:Mvar biasanya disebut vektor . Elemen Templat:Mvar biasanya disebut skalar . Simbol umum untuk menunjukkan ruang vektor termasuk U, V dan W.[1]

Dalam dua contoh di atas, bidang adalah bidang dari bilangan real, dan himpunan vektor terdiri dari panah planar dengan titik awal tetap dan pasangan bilangan real.

Untuk memenuhi syarat sebagai ruang vektor, himpunan Templat:Mvar dan operasi penjumlahan dan perkalian harus mematuhi sejumlah persyaratan yang disebut aksioma.[2] Ini tercantum dalam tabel di bawah ini, di mana Templat:Math, Templat:Math dan Templat:Math menunjukkan vektor arbitrer di Templat:Mvar, dan Templat:Mvar dan Templat:Mvar menunjukkan skalar di Templat:Mvar.[3][4]

Aksioma Rumus
Asosiatif tambahan Templat:Math
Komutatif tambahan Templat:Math
Elemen identitas penambahan Ada elemen Templat:Math, disebut vektor nol , sepertivTemplat:Math untuk Templat:Math.
Elemen invers penambahan Untuk setiap Templat:Math, ada elemen Templat:Math, disebut aditif invers dari Templat:Math, seperti yang Templat:Math.
Kompatibilitas dari perkalian skalar dengan perkalian bidang Templat:Math [nb 2]
Elemen identitas perkalian skalar Templat:Math, dengan Templat:Math menunjukkan multiplicative identity di Templat:Mvar.
Distributivitas perkalian skalar sehubungan dengan penambahan vektor Templat:Math
Distributivitas perkalian skalar sehubungan dengan penambahan medan Templat:Math

Aksioma ini menggeneralisasi properti vektor yang diperkenalkan pada contoh di atas. Memang, hasil penjumlahan dua pasangan berurutan (seperti contoh kedua di atas) tidak bergantung pada urutan penjumlahan:

Templat:Math.

Demikian juga, dalam contoh geometris vektor sebagai panah, Templat:Math karena jajar genjang yang menentukan jumlah vektor tidak bergantung pada urutan vektor. Semua aksioma lainnya dapat diverifikasi dengan cara yang sama pada kedua contoh. Jadi, dengan mengabaikan sifat konkret dari jenis vektor tertentu, definisi menggabungkan dua dan lebih banyak contoh dalam satu pengertian ruang vektor.

Pengurangan dua vektor dan pembagian dengan skalar (bukan nol) dapat didefinisikan sebagai

𝐯𝐰=𝐯+(𝐰)𝐯a=1a𝐯.

Ketika bidang skalar Templat:Mvar adalah bilangan real Templat:Math, ruang vektor disebut ruang vektor nyata . Jika bidang skalar adalah bilangan kompleks Templat:Math, ruang vektor disebut ruang vektor kompleks . Kedua kasus ini adalah yang paling sering digunakan dalam bidang teknik. Definisi umum ruang vektor memungkinkan skalar menjadi elemen dari setiap bidang Templat:Mvar tetap. Gagasan tersebut kemudian dikenal sebagai Templat:Mvar- ruang vektor atau ruang vektor di atas Templat:Mvar . Bidang pada dasarnya adalah sekumpulan angka yang memiliki operasi penambahan, pengurangan, perkalian dan pembagian.[nb 3] Misalnya, bilangan rasional membentuk suatu bidang.

Berbeda dengan intuisi yang berasal dari vektor pada bidang dan kasus berdimensi lebih tinggi, dalam ruang vektor umum, tidak ada gagasan tentang kedekatan, sudut atau jarak. Untuk menangani hal-hal tersebut, jenis ruang vektor tertentu diperkenalkan; lihat Ruang vektor dengan struktur tambahan di bawah untuk informasi selengkapnya.

Rumus alternatif dan konsekuensi dasar

Penjumlahan vektor dan perkalian skalar adalah operasi, memenuhi sifat penutupan: Templat:Math dan Templat:Math berada di Templat:Math untuk Templat:Math pada Templat:Math, dan Templat:Math, Templat:Math ke Templat:Math. Beberapa sumber yang lebih tua menyebutkan sifat-sifat ini sebagai aksioma yang terpisah.[5]

Dalam bahasa aljabar abstrak, empat aksioma pertama ekivalen dengan mensyaratkan himpunan vektor menjadi grup Abelian di bawah tambahan. Aksioma yang tersisa memberi grup ini struktur Templat:Math-modul. Dengan kata lain, ada ring homomorphism Templat:Math dari bidang Templat:Math ke dalam gelanggang endomorfisme dari grup vektor. Kemudian perkalian skalar Templat:Math didefinisikan sebagai Templat:Math.[6]

Sejarah

Templat:See Ruang vektor berasal dari geometri affine, melalui pengenalan koordinat pada bidang atau ruang tiga dimensi. Sekitar 1636, ahli matematika Prancis René Descartes dan Pierre de Fermat mendirikan geometri analitik dengan mengidentifikasi solusi persamaan dua variabel dengan titik-titik pada bidang kurva.[7] Untuk mencapai solusi geometris tanpa menggunakan koordinat, Bolzano diperkenalkan, pada tahun 1804, operasi tertentu pada titik, garis dan bidang, yang merupakan pendahulu vektor.[8] This work was made use of in the conception of barycentric coordinates by Möbius in 1827.[9] Landasan dari definisi vektor adalah Bellavitis 'pengertian bipoint, segmen berorientasi salah satu ujungnya adalah asal dan yang lain target. Vektor dipertimbangkan kembali dengan penyajian bilangan kompleks oleh Argand dan Hamilton dan dimulainya Kuarternion oleh yang terakhir.[10] Mereka adalah elemen dalam R2 dan R4; memperlakukan mereka menggunakan kombinasi linier s kembali ke Laguerre pada tahun 1867, yang juga mendefinisikan sistem persamaan linear.

Pada tahun 1857, Cayley memperkenalkan notasi matriks yang memungkinkan harmonisasi dan penyederhanaan peta linear. Sekitar waktu yang sama, Grassmann mempelajari kalkulus barycentric yang diprakarsai oleh Mbius. Dia membayangkan kumpulan objek abstrak yang diberkahi dengan operasi.[11] Dalam karyanya, konsep kebebasan linear dan dimensi, serta produk skalar hadir. Sebenarnya karya Grassmann tahun 1844 melebihi kerangka vektor ruang, karena perkaliannya yang mempertimbangkan, juga, membawanya ke apa yang sekarang disebut aljabar. Matematikawan Italia Peano adalah orang pertama yang memberikan definisi modern ruang vektor dan peta linier pada tahun 1888.[12]

Perkembangan penting dari ruang vektor adalah karena pembangunan ruang fungsi oleh Henri Lebesgue. Ini kemudian diresmikan oleh Banach dan Hilbert, sekitar 1920.[13] Pada saat itu, aljabar dan bidang baru analisis fungsional mulai berinteraksi, terutama dengan konsep-konsep kunci seperti Ruang Lp dan ruang Hilbert.[14] Juga pada saat ini, studi pertama tentang ruang vektor berdimensi tak hingga telah dilakukan.

Contoh

Templat:Main

Ruang koordinat

Contoh paling sederhana dari ruang vektor di atas bidang Templat:Math adalah bidang itu sendiri, dilengkapi dengan penjumlahan dan perkalian standarnya. Lebih umum lagi, semua [[tupel|Templat:Math-tupel]] (urutan panjang Templat:Math)

Templat:Math

dari elemen Templat:Math membentuk ruang vektor yang biasanya dilambangkan Templat:Math dan disebut ruang koordinat.[15] Kasus Templat:Math adalah contoh paling sederhana yang disebutkan di atas, di mana bidang Templat:Math juga dianggap sebagai ruang vektor di atasnya. Kasus Templat:Math and Templat:Math telah dibahas dalam pendahuluan di atas.

Bilangan kompleks dan ekstensi bidang lainnya

Himpunan bilangan kompleks Templat:Math, Artinya, angka yang bisa dituliskan dalam bentuk Templat:Math untuk bilangan real Templat:Matematika dan Templat:Matematika di mana Templat:Matematika adalah satuan imajiner , bentuk ruang vektor di atas real dengan penjumlahan dan perkalian seperti biasa: Templat:Math dan Templat:Math untuk bilangan real Templat:Math, Templat:Math, Templat:Math, Templat:Math dan Templat:Math. Berbagai aksioma ruang vektor mengikuti fakta bahwa aturan yang sama berlaku untuk aritmatika bilangan kompleks.

Faktanya, contoh bilangan kompleks pada dasarnya sama (yaitu isomorfik ) dengan ruang vektor pasangan terurut bilangan real yang disebutkan di atas: jika kita memikirkan bilangan kompleks Templat:Math sebagai mewakili urutan Templat:Math di bidang kompleks kemudian kita melihat bahwa aturan penjumlahan dan perkalian skalar sama persis dengan yang ada di contoh sebelumnya.

Secara lebih umum, ekstensi bidang menyediakan kelas lain dari contoh ruang vektor, terutama dalam aljabar dan teori bilangan aljabar: bidang Templat:Matematika berisi bidang lebih kecil Templat:Matematika adalah ruang vektor-Templat:Matematika, dengan operasi perkalian dan penjumlahan yang diberikan Templat:Math.[16] Misalnya, bilangan kompleks adalah ruang vektor Templat:Math, dan ekstensi bidang 𝐐(i5) adalah vektor ruang atas Templat:Math.

Ruang fungsi

Templat:Main

Penambahan fungsi: Jumlah sinus dan fungsi eksponensial adalah sin+exp: dengan (sin+exp)(x)=sin(x)+exp(x)

Fungsi dari himpunan tetap Templat:Math ke bidang Templat:Math juga membentuk ruang vektor, dengan melakukan penjumlahan dan perkalian skalar searah jarum jam. Artinya, jumlah dari dua fungsi Templat:Math dan Templat:Math adalah fungsi Templat:Math diberikan oleh

Templat:Math,

dan juga untuk perkalian. Ruang fungsi seperti itu terjadi dalam banyak situasi geometris, ketika Templat:Math adalah garis nyata atau interval, atau himpunan bagian lainnya dari Templat:Math. Banyak gagasan dalam topologi dan analisis, seperti kontinuitas, integrabilitas atau diferensiabilitas berperilaku baik sehubungan dengan linearitas: penjumlahan dan kelipatan skalar dari fungsi yang memiliki sifat seperti itu masih memiliki sifat itu.[17] Oleh karena itu, himpunan fungsi tersebut adalah ruang vektor. Mereka dipelajari secara lebih rinci menggunakan metode analisis fungsional, lihat di bawah.Templat:Clarify Batasan aljabar juga menghasilkan ruang vektor: [[gelanggang polinomial|ruang vektor Templat:Math]] diberikan oleh fungsi polinomial:

Templat:Math, dimana koefisien Templat:Math berada di Templat:Math.[18]

Persamaan linear

Templat:Main Sistem persamaan linear homogen s terkait erat dengan ruang vektor.[19] For example, the solutions of

Templat:Math Templat:Math Templat:Math Templat:Math Templat:Math Templat:Math
Templat:Math Templat:Math Templat:Math Templat:Math Templat:Math Templat:Math

diberikan dengan tiga kali lipat dengan sembarang Templat:Math, Templat:Math, dan Templat:Math. Mereka membentuk ruang vektor: penjumlahan dan kelipatan skalar dari tiga kali lipat masih memenuhi rasio yang sama dari ketiga variabel; jadi mereka juga solusi. Matriks dapat digunakan untuk memadatkan beberapa persamaan linier seperti di atas menjadi satu persamaan vektor, yaitu

Templat:Math,

dimana Templat:Math [131422] is matriks yang berisi koefisien dari persamaan yang diberikan, Templat:Math adalah vektor Templat:Math, Templat:Math menunjukkan produk matriks, dan Templat:Math adalah vektor nol. Dengan nada yang sama, solusi dari persamaan diferensial linier homogen membentuk ruang vektor. Sebagai contoh,

Templat:Math

hasil Templat:Math, dimana Templat:Math dan Templat:Math adalah konstanta arbitrer, dan Templat:Math adalah fungsi eksponensial alami.

Definisi formal

Sebuah ruang vektor (atas medan F) adalah himpunan V, bersama-sama dengan dua operasi, yaitu penjumlahan vektor dan perkalian skalar, dan memenuhi aksioma-aksioma berikut (untuk semua 𝐮,𝐯,𝐰V dan a,bF):

Aksioma Pernyataan
Sifat asosiatif penjumlahan u + (v + w) = (u + v) + w.
Sifat komutatif penjumlahan v + w = w + v.
Elemen identitas penjumlahan Terdapat elemen 0V, dinamakan sebagai vektor nol, sedemikian sehingga v + 0 = v untuk semua vV.
Elemen invers penjumlahan Untuk semua v ∈ V, terdapat elemen wV, dinamakan sebagai invers penjumlahan v, sedemikan sehingga v + w = 0. Invers penjumlahan ini dilambangkan sebagai −v.
Sifat distributif perkalian skalar terhadap penjumlahan vektor   a(v + w) = av + aw.
Sifat distributif perkalian skalar terhadap penjumlahan medan (a + b)v = av + bv.
Kesesuaian perkalian skalar dengan perkalian medan a(bv) = (ab)v [20]
Elemen identitas pada perkalian skalar 1v = v, dengan 1 melambangkan entitas perkalian dalam F.

Dalam peta linear

Templat:Lihat Kasus khusus yang penting adalah ketika Templat:Math, di mana peta linearnya disebut endomorfisme (linear) dari Templat:Math. Terkadang istilah operator linear dipakai untuk kasus ini.[21] Dalam kebiasaan yang lain, operator linear membolehkan Templat:Mvar dan Templat:Mvar yang berbeda, tetapi mereka harus merupakan urang vektor real.[22] Terkadang istilah fungsi linear memiliki arti yang sama dengan peta linear, sedangkan dalam geometri analisis artinya berbeda.

Sebuah peta linear selalu memetakan subruang linear ke subruang linear (mungkin dengan dimension yang lebih rendah);[23] contohnya pemetaan sebuah bidang yang melalui titik nol ke sebuah bidang, garis lurus atau titik. Peta linear biasanya dilambangkan sebagai matriks, dan contoh sederhananya adalah transformasi linear rotasi dan pencerminan.

Dalam bahasa aljabar abstrak, sebuah peta linear merupakan sebuah homoformisme modul. Dalam bahasa teori kategori, sebuah peta linear merupakan sebuah morfisme dalam kategori modul pada sebuah gelanggang.

Lihat pula

Templat:Col-begin Templat:Col-1-of-3

Templat:Col-2-of-3

Templat:Col-3-of-3

Templat:Col-end

Catatan

Templat:Reflist

Kutipan

Templat:Reflist

Referensi

Aljabar

Analisis

Referensi sejarah

Referensi lebih lanjut

Pranala luar

Templat:Wikibooks Templat:Wikibooks

Templat:Aljabar linear

  1. 1,0 1,1 Templat:Cite web
  2. Templat:Harvard citations
  3. Templat:Cite web
  4. Templat:Cite web
  5. Templat:Harvard citations
  6. Templat:Harvard citations. Bourbaki menyebut grup homomorfisme Templat:Math homotheties.
  7. Templat:Harvard citations.
  8. Templat:Harvard citations.
  9. Templat:Harvard citations.
  10. Templat:Harvard citations.
  11. Templat:Harvard citations.
  12. Templat:Harvard citations.
  13. Templat:Harvard citations.
  14. Templat:Harvard citations, Templat:Harvard citations.
  15. Templat:Harvard citations
  16. Templat:Harvard citations
  17. Templat:Harvard citations
  18. Templat:Harvard citations
  19. Templat:Harvard citations
  20. Aksioma ini tidak menyatakan sifat asosiatif operasi, karena ada dua operasi dalam hal ini, perkalian skalar: bv; dan perkalian medan: ab.
  21. Transformasi linear dari Templat:Mvar ke Templat:Mvar sering disebut operator linear di Templat:Mvar Templat:Harvnb
  22. Misalkan Templat:Mvar dan Templat:Mvar adalah dua ruang vektor real. Sebuat pemetaan dari Templat:Mvar ke Templat:Mvar disebut sebuah 'pemetaan linear' atau 'transformasi linear' atau 'operator linear' [...] dari Templat:Mvar ke Templat:Mvar, apabila
    a(u+v)=au+av untuk setiap u,vV,
    a(λu)=λau untuk setiap uV dan semua Templat:Mvar real. Templat:Harvnb
  23. Templat:Harvnb
    Berikut beberapa sifat dari pemetaan linear Λ:XY yang buktinya sangat mudah jadi kita tidak menuliskannya; diasumsikan bahwa AX dan BY: Templat:Ordered list


Kesalahan pengutipan: Ditemukan tag <ref> untuk kelompok bernama "nb", tapi tidak ditemukan tag <references group="nb"/> yang berkaitan