Teori bilangan aljabar

Dari testwiki
Loncat ke navigasi Loncat ke pencarian

Templat:Periksa terjemahan

Templat:Ring theory sidebar

Halaman judul edisi pertama Disquisitiones Arithmeticae, salah satu karya pendiri teori bilangan aljabar modern.

Teori bilangan aljabar adalah cabang dari teori bilangan yang menggunakan teknik aljabar abstrak untuk mempelajari bilangan bulat, bilangan rasional, dan generalisasinya. Soal-soal berteori bilangan dinyatakan dalam properti objek aljabar seperti bidang bilangan aljabar dan gelanggang bilangan bulat, bidang berhingga, dan Fungsi aljabar. Properti ini, seperti apakah gelanggang mengakui faktorisasi unik, perilaku ideal, dan Galois grup dari bidang, dapat menyelesaikan pertanyaan yang sangat penting dalam teori bilangan, seperti keberadaan solusi untuk persamaan Diofantin.

Sejarah teori bilangan aljabar

Diophantus

Awal mulanya teori bilangan aljabar dapat ditelusuri kembali dari persamaan Diophantine.[1] Nama dari persamaan tersebut diambil dari seorang ahli matematika Aleksandria pada abad ke-3, Diophantus, yang mempelajarinya dan mengembangkan metode untuk solusi dari beberapa jenis persamaan Diophantine. Masalah Diophantine yang khas meminta untuk menemukan dua buah bilangan bulat x dan y sehingga jumlahnya beserta jumlah dari kuadratnya, masing-masing sama dengan dua bilangan A dan B.

A=x+yB=x2+y2.

Persamaan Diophantine telah dipelajari selama ribuan tahun. Sebagai contoh, solusi untuk persamaan Diophantine kuadratik x2=y2=z2 yang dinyatakan sebagai tripel Pythagoras, sudah terpecahkan oleh bangsa Babilonia (c. 1800 SM).[2] Sementara itu, solusi untuk persamaan Diophantime linear, seperti 26x+65y=13, dapat ditemukan dengan menggunakan algoritma Euklides (c. abad ke-5 SM).[3]

Karya utama Diophantus adalah Aritmetika, yang hanya sebagian yang bertahan.

Fermat

Teorema Terakhir Fermat pertama kali diduga oleh Pierre de Fermat pada tahun 1637. Dugaan teorema itu terkenal di margin salinan yang berjudul Arithmetica, dan di dalamnya dikatakan dia memiliki bukti yang terlalu besar untuk disesuaikan. Tidak ada bukti yang berhasil diterbitkan sampai 1995 meskipun upaya matematikawan yang tak terhitung jumlahnya selama 358 tahun terjadi. Masalah yang belum terpecahkan tersebut mendorong perkembangan teori bilangan aljabar di abad ke-19 dan bukti teorema modularitas di abad ke-20.

Gauss

Salah satu karya pendiri teori bilangan aljabar, Disquisitiones Arithmeticae adalah buku teks mengenai teori bilangan yang ditulis dalam bahasa Latin.[4] Buku itu ditulis oleh Carl Friedrich Gauss pada tahun 1798 saat Gauss berusia 21 tahun, dan diterbitkan pada tahun 1801 untuk pertama kalinya saat Gauss berusia 24 tahun. Di dalam bukunya, Gauss menyatukan hasil dalam teori bilangan yang didapatkan oleh matematikawan seperti Fermat, Euler, Lagrange dan Legendre; ia menambahkan hasil baru pentingnya sendiri. Sebelum diterbitkannya Disquisitiones, teori bilangan terdiri dari kumpulan teorema dan dugaan yang terisolasi. Gauss menyatukan karya milik para pendahulunya dengan karya aslinya sendiri ke dalam kerangka yang sistematis, mengisi celah, mengoreksi bukti yang tidak masuk akal, dan memperluas subjek dengan berbagai cara.

Disquisitiones adalah titik awal untuk karya matematikawan Eropa di abad kesembilan belas lainnya. Matematikawan pada kala itu di antaranya adalah Ernst Kummer, Peter Gustav Lejeune Dirichlet dan Richard Dedekind. Banyak anotasi yang diberikan oleh Gauss pada dasarnya merupakan pengumuman tentang penelitiannya lebih lanjut, beberapa di antaranya tetap tidak diterbitkan. Mereka tampaknya sangat samar bagi orang-orang sezamannya; kita sekarang dapat membacanya sebagai mengandung kuman dari teori L-fungsi dan perkalian kompleks, khususnya.

Dirichlet

Dalam beberapa makalah pada tahun 1838 dan 1839, Peter Gustav Lejeune Dirichlet membuktikan rumus bilangan kelas, untuk bentuk kuadratik (yang kemudian diperbaiki oleh muridnya Leopold Kronecker). Rumus tersebut, yang disebut Jacobi sebagai hasil "[yang] menyentuh kecerdasan manusia sepenuhnya", membuka jalan bagi hasil yang serupa mengenai lapangan bilangan yang lebih umum.[5] Berdasarkan penelitiannya tentang struktur grup satuan bidang kuadratik, ia membuktikan teorema satuan Dirichlet, sebuah hasil fundamental dalam teori bilangan aljabar.[6]

Dia pertama-tama menggunakan prinsip lubang merpati, argumen penghitungan dasar, dalam bukti teorema di perkiraan diophantine, kemudian dinamai menurut namanya teorema pendekatan Dirichlet. Dia menerbitkan kontribusi penting untuk teorema terakhir Fermat, yang membuktikan kasus n = 5 dan n = 14, dan pada hukum timbal balik bikuadratik.[5] Masalah pembagi dirichlet, yang dia temukan hasil pertamanya, masih merupakan masalah yang belum terpecahkan dalam teori bilangan meskipun kemudian ada kontribusi dari peneliti lain.

Dedekind

Richard Dedekind studi tentang karya Lejeune Dirichlet adalah apa yang membawanya ke studi selanjutnya tentang bidang bilangan aljabar dan cita-cita. Pada tahun 1863, ia menerbitkan kuliah Lejeune Dirichlet tentang teori bilangan sebagai Vorlesungen über Zahlentheorie ("Kuliah tentang Teori Bilangan") tentang yang telah dituliskan bahwa:

"Meskipun buku itu pasti didasarkan pada ceramah Dirichlet, dan meskipun Dedekind sendiri merujuk buku itu sepanjang hidupnya sebagai Dirichlet, buku itu sendiri seluruhnya ditulis oleh Dedekind, sebagian besar setelah kematian Dirichlet." (Edwards 1983)

Edisi 1879 dan 1894 dari Vorlesungen termasuk suplemen yang memperkenalkan gagasan ideal, fundamental untuk teori gelanggang. (Kata "Gelanggang", yang kemudian diperkenalkan oleh Hilbert, tidak muncul dalam karya Dedekind.) Dedekind mendefinisikan ideal sebagai bagian dari himpunan angka, terdiri dari bilangan bulat aljabar yang memenuhi persamaan polinomial dengan koefisien bilangan bulat. Konsep ini mengalami pengembangan lebih lanjut di tangan Hilbert dan, terutama, Emmy Noether. Cita-cita menggeneralisasi bilangan ideal Ernst Eduard, yang dirancang sebagai bagian dari upaya Kummer tahun 1843 untuk membuktikan Teorema Terakhir Fermat.

Hilbert

David Hilbert menyatukan bidang teori bilangan aljabar dengan risalahnya pada tahun 1897 Zahlbericht (secara harfiah berarti "laporan angka"). Dia juga menyelesaikan teori bilangan signifikan masalah yang dirumuskan oleh Waring pada tahun 1770. Seperti teorema keterbatasan, ia menggunakan bukti keberadaan yang menunjukkan bahwa harus ada solusi untuk masalah tersebut daripada menyediakan mekanisme untuk menghasilkan jawaban.[7] Dia kemudian memiliki lebih sedikit untuk dipublikasikan tentang subjek; Namun munculnya bentuk modular Hilbert dalam disertasi seorang mahasiswa berarti namanya lebih melekat pada suatu bidang utama.

Dia membuat serangkaian dugaan tentang teori bidang kelas. Konsepnya sangat berpengaruh, dan kontribusinya sendiri tetap hidup dalam nama bidang kelas Hilbert dan simbol Hilbert teori bidang kelas lokal. Hasilnya sebagian besar dibuktikan pada tahun 1930, setelah dikerjakan oleh Teiji Takagi.[8]

Artin

Emil Artin menetapkan Hukum timbal balik Artin dalam serangkaian makalah (1924; 1927; 1930). Hukum ini merupakan teorema umum dalam teori bilangan yang merupakan bagian sentral dari teori medan kelas global.[9] Istilah "hukum timbal balik" mengacu pada garis panjang pernyataan teoretis bilangan yang lebih konkret yang digeneralisasikan, dari hukum timbal balik kuadrat dan hukum timbal balik dari Eisenstein dan rumus produk Kummer pada Hilbert untuk simbol norma. Hasil Artin memberikan solusi parsial untuk masalah kesembilan Hilbert.

Teori modern

Sekitar tahun 1955, matematikawan Jepang Goro Shimura dan Yutaka Taniyama mengamati kemungkinan hubungan antara dua yang tampaknya sangat berbeda, cabang matematika, kurva elips dan bentuk modular. Teorema modularitas yang dihasilkan (pada waktu itu dikenal sebagai dugaan Taniyama-Shimura) menyatakan bahwa setiap kurva eliptik adalah modular, artinya dapat dikaitkan dengan bentuk modular unik.

Awalnya dianggap tidak mungkin atau sangat spekulatif, dan dianggap lebih serius ketika ahli teori nomor André Weil menemukan bukti yang mendukungnya, tetapi tidak ada bukti; Akibatnya "luar biasa"[10] Dugaan ini sering dikenal sebagai dugaan Taniyama – Shimura-Weil. Ini menjadi bagian dari Program Langlands, daftar dugaan penting yang perlu dibuktikan atau dibongkar.

Dari 1993 hingga 1994, Andrew Wiles memberikan bukti teorema modularitas untuk kurva elips semistabel, yang, bersama-sama dengan teorema Ribet, memberikan bukti untuk Theo Terakhir Fermat. Hampir setiap ahli matematika pada saat itu sebelumnya menganggap Teorema Terakhir Fermat dan Teorema Modularitas tidak mungkin atau hampir tidak mungkin untuk dibuktikan, bahkan diberi perkembangan paling canggih. Wiles pertama kali mengumumkan buktinya pada Juni 1993[11] dalam versi yang segera dikenali memiliki celah serius pada poin kunci. Buktinya dikoreksi oleh Wiles, sebagian bekerja sama dengan Richard Taylor, dan versi terakhir yang diterima secara luas dirilis pada September 1994, dan secara resmi diterbitkan pada 1995. Pembuktiannya menggunakan banyak teknik dari geometri aljabar dan teori bilangan, dan memiliki banyak percabangan dalam cabang-cabang matematika ini. Ia juga menggunakan konstruksi standar geometri aljabar modern, seperti kategori dari skema dan teori Iwasawa, dan teknik abad ke-20 lainnya tidak tersedia untuk Fermat.

Pengertian dasar

Kegagalan faktorisasi unik

Sifat penting dari gelanggang bilangan bulat adalah memenuhi teorema dasar aritmetika, teorema yang menyatakan bahwa setiap bilangan bulat (positif) memiliki faktorisasi menjadi hasil kali bilangan prima, dan faktorisasi ini unik hingga urutan faktor-faktornya. Ini mungkin tidak lagi benar di gelanggang bilangan bulat Templat:Math dari bidang bilangan aljabar Templat:Math.

Sebuah elemen utama adalah elemen Templat:Math dari Templat:Math sedemikian rupa sehingga jika Templat:Math membagi hasil kali Templat:Math, lalu membagi salah satu faktor Templat:Math atau Templat:Math. Properti ini terkait erat dengan primalitas dalam bilangan bulat, karena bilangan bulat positif apa pun yang memenuhi properti ini adalah Templat:Math atau bilangan prima. Namun, itu sangat lemah. Misalnya, Templat:Math bukanlah bilangan prima karena negatif, tetapi merupakan elemen prima. Jika faktorisasi menjadi elemen prima diperbolehkan, maka, bahkan dalam bilangan bulat, ada faktorisasi alternatif seperti

6=23=(2)(3).

Secara umum, jika Templat:Math adalah satuan, artinya bilangan dengan pembalikan perkalian di Templat:Math, dan jika Templat:Math adalah elemen prima, maka Templat:Math juga merupakan elemen prima. Angka-angka seperti Templat:Math dan Templat:Math dikatakan sebagai sekutu . Dalam bilangan bulat, bilangan prima Templat:Math dan Templat:Math adalah asosiasi, tetapi hanya satu yang positif. Mewajibkan bilangan prima positif memilih elemen unik dari antara kumpulan elemen prima terkait. Ketika K bukan angka rasional, bagaimanapun, tidak ada analog dari kepositifan. Misalnya, di Gaussian integers Templat:Math,[12] bilangan Templat:Math dan Templat:Math diasosiasikan karena yang terakhir adalah produk dari yang pertama oleh Templat:Math, tetapi tidak ada cara untuk memilih salah satu sebagai lebih kanonis daripada yang lain. Ini mengarah ke persamaan seperti

5=(1+2i)(12i)=(2+i)(2i),

yang membuktikan Templat:Math, tidak benar bahwa faktorisasi bersifat unik hingga urutan faktor-faktornya. Untuk alasan ini, seseorang mengadopsi definisi faktorisasi unik yang digunakan dalam domain faktorisasi unik (DFU). Dalam DFU, elemen prima yang terjadi dalam faktorisasi hanya diharapkan unik hingga unit dan urutannya.

Namun, bahkan dengan definisi yang lebih lemah ini, banyak cincin bilangan bulat dalam bidang bilangan aljabar tidak menerima faktorisasi unik. Ada halangan aljabar yang disebut kelompok kelas ideal. Ketika kelompok kelas yang ideal adalah sepele, cincinnya adalah DFU. Jika tidak, ada perbedaan antara elemen utama dan elemen tak tersederhanakan. Sebuah elemen yang tidak dapat direduksi Templat:Math adalah elemen yang jika Templat:Math, maka Templat:Math atau Templat:Math adalah satuan. Ini adalah elemen yang tidak dapat difaktorkan lebih jauh. Setiap elemen dalam O mengakui faktorisasi menjadi elemen yang tidak dapat direduksi, tetapi dapat menerima lebih dari satu. Ini karena, meskipun semua elemen utama tidak dapat direduksi, beberapa elemen yang tidak dapat direduksi mungkin bukan prima. Misalnya, perhatikan cincinnya Templat:Math.[13] Di ring ini, angka Templat:Math, Templat:Math dan Templat:Math tidak bisa direduksi. Ini berarti bilangan Templat:Math memiliki dua faktorisasi menjadi elemen yang tidak dapat direduksi,

9=32=(2+5)(25).

Persamaan ini menunjukkan bahwa Templat:Math membagi hasil kali Templat:Math. Jika Templat:Math adalah elemen prima, maka elemen tersebut akan membagi Templat:Math atau Templat:Math, tetapi tidak, karena semua elemen yang habis dibagi oleh Templat:Math berbentuk Templat:Math. Demikian pula, Templat:Math dan Templat:Math bagi produk Templat:Math, tapi tidak satu pun dari elemen ini yang membagi Templat:Math sendiri, jadi tidak satu pun dari mereka adalah bilangan prima. Seperti tidak ada rasa di mana elemen Templat:Math, Templat:Math dan Templat:Math dapat dibuat setara, faktorisasi unik gagal masuk Templat:Math. Berbeda dengan situasi unit, di mana keunikan dapat diperbaiki dengan melemahkan definisi, mengatasi kegagalan ini membutuhkan perspektif baru.

Hasil utama

Keterbatasan kelompok kelas

Salah satu hasil klasik dalam teori bilangan aljabar adalah bahwa kelompok kelas ideal bidang bilangan aljabar K berhingga. Ini adalah konsekuensi dari Teorema Minkowski karena hanya ada banyak Integral ideal dengan norma kurang dari bilangan bulat positif tetap[14] halaman 78. Urutan kelompok kelas disebut nomor kelas, dan sering dilambangkan dengan huruf h.

Teorema stuan Dirichlet

Templat:Main Teorema satuan Dirichlet memberikan gambaran tentang struktur kelompok satuan perkalian O× dari cincin bilangan bulat O . Secara khusus, itu menyatakan itu O× isomorfik untuk G × Zr, di mana G adalah grup siklik berhingga yang terdiri dari semua akar kesatuan di O , dan r = r1 + r2 − 1 (dimana r1 berturutan, r2) menunjukkan jumlah embeddings nyata (masing-masing, pasangan embeddings non-nyata konjugasi) dari K ). Dengan kata lain, O× adalah grup abelian yang dihasilkan terbatas dari peringkat r1 + r2 − 1 yang torsi terdiri dari akar persatuan di O .

Hukum timbal balik

Templat:Main

Dalam istilah simbol Legendre, hukum timbal balik kuadrat untuk bilangan prima positif ganjil menyatakan

(pq)(qp)=(1)p12q12.

Sebuah hukum timbal balik adalah generalisasi dari hukum timbal balik kuadrat.

Ada beberapa cara berbeda untuk mengekspresikan hukum timbal balik. Hukum timbal balik awal yang ditemukan pada abad ke-19 biasanya diekspresikan dalam bentuk simbol sisa daya (p/q) menggeneralisasi simbol timbal balik kuadrat, yang menjelaskan saat bilangan prima adalah sisa daya ke n modulo bilangan prima lain, dan memberikan hubungan antara (p/q) dan (q/p). Hilbert merumuskan kembali hukum timbal balik yang mengatakan bahwa produk melebihi p dari simbol Hilbert (a,b/p), mengambil nilai-nilai dalam akar persatuan, sama dengan 1. Artin yang dirumuskan kembali hukum timbal balik menyatakan bahwa simbol Artin dari cita-cita (atau ideles) ke unsur-unsur Galo. Beberapa generalisasi yang lebih baru mengungkapkan hukum timbal balik menggunakan kohomologi kelompok atau representasi kelompok adelik atau kelompok K aljabar, dan hubungan mereka dengan hukum timbal balik kuadrat yang asli mungkin sulit untuk dilihat.

Rumus nomor kelas

Templat:Main Rumus nomor kelas menghubungkan banyak invarian penting dari bidang angka dengan nilai khusus dari fungsi Dedekind zeta.

Bidang terkait

Teori bilangan aljabar berinteraksi dengan banyak disiplin matematika lainnya. Ini menggunakan alat dari aljabar homologis. Melalui analogi bidang fungsi vs. bidang angka, ini bergantung pada teknik dan ide dari geometri aljabar. Selain itu, studi tentang skema berdimensi lebih tinggi di atas Z daripada cincin angka disebut sebagai geometri aritmetika. Teori bilangan aljabar juga digunakan dalam studi aritmetika hiperbolik 3-manifold.

Lihat pula

Catatan

  1. Stark, pp. 145–146.
  2. Aczel, pp. 14–15.
  3. Stark, pp. 44–47.
  4. Templat:Citation
  5. 5,0 5,1 Templat:Citation
  6. Templat:Citation
  7. Templat:Citation
  8. Karya ini menjadikan Takagi sebagai matematikawan Jepang pertama yang bertaraf internasional.
  9. Templat:Citation
  10. Templat:Citation
  11. Templat:Cite news
  12. Notasi ini menunjukkan cincin yang diperoleh dari Z oleh yg terletak di antara pada Z the element i.
  13. Notasi ini menunjukkan cincin yang diperoleh dari Z berdampingan pada Z elemen Templat:Math.
  14. Templat:Cite web

Bacaan lebih lanjut

Teks pengantar

Teks menengah

Teks tingkat sarjana

Pranala luar

Templat:Footer teori bilangan