Relasi ekuivalensi

Dari testwiki
Loncat ke navigasi Loncat ke pencarian

Templat:Short description

52 relasi ekuivalensi pada himpunan 5-anggota yang digambarkan dengan matriks biner 5x5 (kotak yang berwarna, termasuk yang abu-abu, melambangkan 1; kotak putih melambangkan 0.) Indeks kolom dan baris dari kotak yang berwarna adalah anggota yang berkaitan, sementara warna yang dibedakan, selain abu-abu, mengindikasikan kelas ekuivalensi (masing-masing kotak abu-abu merupakan kelas ekuivalensinya sendiri).

Dalam matematika, relasi ekuivalensi adalah relasi biner yang bersifat reflektif, simetris dan transitif. Relasi "sama dengan" merupakan contoh dasar dari relasi ekuivalensi, di mana untuk sembarang objek Templat:Mvar, Templat:Mvar, dan Templat:Mvar:

Sebagai akibat dari sifat reflektif, simetris, dan transitif, semua relasi ekuivalensi dapat menghasilkan partisi dari himpunan pendasar menjadi kelas-kelas ekuivalensi yang saling lepas. Dua anggota dari suatu himpunan disebut ekuivalen jika dan hanya jika mereka merupakan anggota kelas ekuivalensi yang sama.

Notasi

Berbagai notasi digunakan untuk menunjukkan bahwa dua anggota himpunan Templat:Math dan Templat:Math bersifat ekuivalen terhadap relasi ekuivalen Templat:Math; biasanya "Templat:Math" dan "Templat:Math", yang digunakan ketika Templat:Math bersifat tersirat, dan variasi "Templat:Math", "Templat:Math", atau "Templat:Math" untuk menyebutkan Templat:Math secara tersurat. Sifat tidak ekuivalen bisa ditulis "Templat:Math" atau "a≢b".

Definisi

Suatu relasi biner ~ pada himpunan X disebut merupakan relasi ekuivalensi jika dan hanya jika bersifat reflektif, simetris dan transitif. Artinya, untuk semua a, b dan c dalam X:

X bersama dengan relasi ~ disebut sebuah setoid. Kelas ekuivalensi dari a di bawah ~, dilambangkan dengan [a], didefinisikan sebagai [a]={bXab}.

Contoh

Contoh sederhana

Anggap himpunan {a,b,c} memiliki relasi ekuivalensi {(a,a),(b,b),(c,c),(b,c),(c,b)}. Himpunan [a]={a} dan [b]=[c]={b,c} adalah kelas ekuivalensi dari relasi ini.

Himpunan dari semua kelas ekuivalensi untuk relasi ini adalah {{a},{b,c}}. Himpunan ini adalah partisi dari himpunan {a,b,c}.

Relasi ekuivalensi

Relasi-relasi berikut adalah contoh lain dari relasi ekuivalensi:

  • "sama dengan" pada himpunan bilangan. Sebagai contoh, 12 sama dengan 48.[1]
  • "memiliki tanggal ulang tahun yang sama dengan" pada himpunan orang-orang.
  • "kongruen dengan" pada himpunan semua segitiga.
  • "kongruen modulo n dengan" pada bilangan bulat.[1]
  • "Memiliki nilai mutlak yang sama dengan" pada himpunan bilangan real.
  • "Memiliki nilai kosinus yang sama dengan" pada himpunan semua sudut.

Relasi yang bukan ekuivalensi

  • Relasi "≥" antara dua bilangan real bersifat reflektif dan transitif, namun tidak simetris. Sebagai contoh, 7 ≥ 5 tidak mengakibatkan 5 ≥ 7.
  • Relasi "memiliki faktor pembagi bersama yang lebih besar dari 1 dengan" antara dua bilangan bulat yang lebih besar dari 1, bersifat reflektif dan simetris, namun tidak transitif. Sebagai contoh, bilangan 2 dan 6 sama-sama memiliki faktor bersama yang lebih besar dari 1 (yakni angka 2), bilangan 6 dan 3 juga memiliki bersama yang lebih besar dari 1 (yakni angka 3), tetapi 2 dan 3 tidak memiliki faktor bersama yang lebih besar dari 1.

Kelas ekuivalensi, himpunan hasil bagi, dan partisi

Anggap a,bX. Ada beberapa definisi

Kelas ekuivalensi

Templat:Main Sebuah subhimpunan Y dari X, dengan ab tetap berlaku untuk semua a,bY namun tidak pernah ketika aY  dan  bY, disebut sebagai sebuah kelas ekuivalensi dari X. Anggap [a]:={xX|ax} menyatakan kelas ekuivalensi yang berisi elemen a. Semua elemen di X yang saling ekuivalen menjadi anggota pada kelas ekuivalensi yang sama.

Himpunan hasil bagi

Templat:Main Himpunan semua kelas ekuivalensi dari X, yang dinyatakan sebagai X/:={[x]xX} , adalah himpunan hasil bagi dari X. Jika X adalah ruang topologis, ada cara mudah mengubah X/ menjadi ruang topologis. Lihat ruang hasil bagi untuk detailnya.

Teorema dasar relasi ekuivalensi

Salah satu hasil penting yang menghubungkan relasi ekuivalensi dan partisi adalah:[2][3][4]

  • Relasi ekuivalensi pada himpunan X mempartisi himpunan X tersebut.
  • Kebalikannya, untuk setiap partisi himpunan X, terdapat suatu relasi ekuivalensi yang sesuai pada himpunan X.

Anggap Y sebagai partisi dari X. Pada kedua kasus, sebuah himpunan di Y adalah kelas ekuivalensi dari X. Karena setiap elemen di X terletak di tepat satu himpunan di Y, dan karena setiap himpunan di Y identik ke kelas ekuivalensi dari X, maka setiap elemen di X terletak di tepat satu kelas ekuivalensi dari X. Dengan demikian, terdapat bijeksi antara himpunan semua relasi ekuivalensi di X dengan himpunan semua partisi dari X.

Referensi

Pranala luar


Templat:Matematika-stub