Langkah acak

Dari testwiki
Revisi sejak 20 November 2023 03.17 oleh imported>Shole23 (memperbaiki artikel)
(beda) ← Revisi sebelumnya | Revisi terkini (beda) | Revisi selanjutnya → (beda)
Loncat ke navigasi Loncat ke pencarian

Templat:Cleanup

Lima langkah acak delapan-langkah dari sebuah titik pusat. Beberapa jalur terlihat lebih pendek daripada delapan langkah karena dalam rutenya dilakukan langkah balik. (versi animasi)

Langkah acak adalah sebuah objek matematis, dikenal sebagai proses acak (stokastik), yang menggambarkan sebuah jalur yang terdiri dari serangkaian langkah acak berturut-turut dalam suatu ruang matematis seperti bilangan bulat. Contoh dasar dari langkah acak adalah sebuah langkah acak di garis bilangan bulat, , yang dimulai di 0 dan pada setiap langkahnya bergerak +1 atau −1 dengan kemungkinan yang sama. Contoh-contoh yang lain di antaranya adalah jalur yang dilalui sebuah molekul ketika bergerak di dalam cairan atau gas, jalur pencarian dari seekor hewan yang mencari makanan, harga saham yang berubah-ubah dan status finansial seorang pejudi: semuanya bisa diperkirakan oleh model langkah acak, meskipun mereka mungkin tidak benar-benar acak. Sebagaimana diilustrasikan oleh contoh-contoh tersebut, langkah acak bisa diterapkan dalam bidang rekayasa serta banyak bidang ilmu pengetahuan lainnya termasuk ekologi, psikologi, ilmu komputer, fisika, kimia, biologi, ilmu ekonomi, dan sosiologi. Langkah acak menjelaskan perilaku yang diamati dalam berbagai proses dalam bidang-bidang tersebut, sehingga menjadi model yang fundamental bagi aktivitas stokastik yang direkam. Untuk penerapan yang lebih matematis, nilai dari Templat:Pi bisa diperkirakan menggunakan langkah acak dalam lingkungan pemodelan berbasis agen.[1][2]

Terdapat berbagai jenis langkah acak yang diminati, yang masing-masing memiliki perbedaan. Istilah "langkah acak" sendiri biasanya mengacu kepada sebuah kategori khusus dari rantai Markov atau proses Markov, tetapi banyak proses bergantung-waktu yang disebut sebagai langkah acak, menggunakan sebuah pengubah yang menandakan ciri khususnya. Langkah acak baik yang Markov maupun non-Markov, bisa juga terjadi dalam berbagai ruang: yang biasanya dipelajari adalah graf, garis bilangan bulat atau real, bidang atau ruang vektor berdimensi tinggi, permukaan lengkung atau manifol Riemannian berdimensi tinggi, dan grup terhingga, terbangkit hingga atau Lie. Parameter waktu juga bisa dimanipulasi. Dalam konteks yang sederhana langkahnya terjadi dalam waktu yang diskrit, yaitu barisan variabel acak (XTemplat:Su) = (XTemplat:Su, XTemplat:Su, ...) dengan indeks bilangan asli. Akan tetapi, bisa juga didefinisikan langkah acak yang melakukan langkahnya pada waktu yang acak, dan dalam kasus itu, posisi XTemplat:Su harus didefinisikan untuk semua waktu t ∈ [0,+∞). Kasus atau batasan tertentu dari langkah acak di antaranya termasuk penerbangan Lévy dan model difusi seperti gerak Brown.

Penerapan

Patung Quantum Cloud buatan Antony Gormley di London dirancang oleh komputer menggunakan algoritma langkah acak.

Seperti yang telah disebutkan, terdapat berbagai fenomena alam yang sudah dideskripsikan menggunakan suatu jenis langkah acak, khususnya dalam fisika[3][4] dan kimia,[5] ilmu material,[6][7] biologi[8] dan berbagai bidang lain.[9][10] Berikut ini adalah beberapa penerapan spesifik dari langkah acak:

Lihat pula

Referensi

Templat:Reflist

Pranala luar

Templat:Proses stokastik Templat:Math-stub

  1. Templat:Cite journal
  2. Wirth E. (2015). Pi from agent border crossings by NetLogo package. Wolfram Library Archive
  3. Risken H. (1984) The Fokker–Planck Equation. Springer, Berlin.
  4. De Gennes P. G. (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca and London.
  5. Van Kampen N. G. (1992) Stochastic Processes in Physics and Chemistry, revised and enlarged edition. North-Holland, Amsterdam.
  6. Templat:Cite book
  7. Doi M. and Edwards S. F. (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford
  8. Goel N. W. and Richter-Dyn N. (1974) Stochastic Models in Biology. Academic Press, New York.
  9. Redner S. (2001) A Guide to First-Passage Process. Cambridge University Press, Cambridge, UK.
  10. Cox D. R. (1962) Renewal Theory. Methuen, London.
  11. Templat:Cite book
  12. Templat:Cite journal
  13. Templat:Cite journal
  14. Templat:Cite journal
  15. Templat:Cite journal
  16. Templat:Cite journal
  17. Gupta, Pankaj et al. WTF: The who-to-follow system at Twitter, Proceedings of the 22nd international conference on World Wide Web