Segi empat

Dari testwiki
Loncat ke navigasi Loncat ke pencarian

Templat:Infobox polygon Dalam geometri bidang Euklides, segi empat (Templat:Lang-en) adalah poligon dengan empat sisi dan empat sudut. Kadang-kadang, istilah quadrangle digunakan, dengan analogi dengan triangle (segitiga), dan kadang-kadang tetragon untuk konsistensi dengan pentagon (5 sisi), heksagon (6 sisi) dan sebagainya.

Kata "quadrilateral" berasal dari kata Latin quadri, empat, dan latus, yang berarti "sisi".

Segi empat dapat berupa segi empat sederhana (tidak berpotongan dengan diri sendiri) atau kompleks (berpotongan dengan diri sendiri). Segi empat sederhana terbagi menjadi segi empat cembung (convex) atau cekung (concave).

Sudut interior segi empat sederhana (dan planar) ABCD jika dijumlah sama dengan 360 derajat busur, yaitu

A+B+C+D=360.

Semua segi empat yang tidak memotong dirinya sendiri membentuk pengubinan dengan rotasi berulang di sekitar titik tengah tepinya.

Segi empat sederhana

Segi empat apa pun yang tidak berpotongan dengan diri sendiri adalah segi empat sederhana.

Segi empat cembung

Diagram Euler dari beberapa jenis segi empat sederhana. (UK) menunjukkan Bahasa Inggris Inggris dan (US) menunjukkan Bahasa Inggris Amerika.

Dalam segi empat cembung, semua sudut interior kurang dari 180° dan kedua diagonal terletak di dalam segiempat.

  • Segiempat tidak beraturan: tidak ada sisi yang sejajar.
  • Trapesium: setidaknya satu pasang sisi yang berhadapan sejajar. Trapesium mencakup jajaran genjang.
  • Trapesium sama kaki: sepasang sisi yang berlawanan adalah paralel dan sudut alasnya sama. Definisi alternatif adalah segi empat dengan sumbu simetri membagi dua sisi yang berlawanan, atau trapesium dengan diagonal-diagonal yang panjangnya sama.
  • Jajar genjang: segi empat dengan dua pasang sisi sejajar. Syarat yang setara adalah bahwa sisi yang berhadapan memiliki panjang yang sama; bahwa sudut yang berhadapan adalah sama; atau bahwa diagonal saling membagi dua. Jajar genjang mencakup belah ketupat (mencakup persegi) dan rhomboid (mencakup persegi panjang yang bukan persegi). Dengan kata lain, jajar genjang mencakup semua belah ketupat dan semua rhomboid, dan dengan demikian juga mencakup semua persegi panjang.
  • Belah ketupat: keempat sisinya memiliki panjang yang sama. Syarat yang setara adalah bahwa diagonal-diagonalnya saling memotong tegak lurus dan membagi menjadi dua bagian.
  • Rhomboid: jajar genjang di mana sisi yang berdekatan memiliki panjang yang tidak sama dan beberapa sudut tumpul (ekuivalen, tidak memiliki sudut siku-siku). Tidak semua referensi setuju, beberapa mendefinisikan rhomboid sebagai jajar genjang yang bukan belah ketupat.[1]
  • Persegi panjang: keempat sudut adalah sudut siku-siku. Syarat yang setara adalah bahwa diagonal saling membagi dua dan panjangnya sama. Persegi panjang mencakup persegi dan oblong.
  • Persegi atau bujur sangkar (segi empat teratur): keempat sisinya memiliki panjang yang sama (ekuilateral), dan keempat sudutnya adalah sudut siku-siku. Syarat yang setara adalah bahwa sisi yang berlawanan adalah sejajar (persegi termasuk jajar genjang), bahwa diagonal saling membagi dua, dan memiliki panjang yang sama. Segi empat adalah persegi jika dan hanya jika itu adalah belah ketupat dan persegi panjang (empat sisi yang sama dan empat sudut yang sama).
  • Oblong: istilah yang kadang-kadang digunakan untuk menunjukkan sebuah persegi panjang yang memiliki sisi yang berdekatan yang tidak sama (mis. persegi panjang yang bukan persegi).[2]
  • Layang-layang: dua pasang sisi yang berdekatan memiliki panjang yang sama. Ini menyiratkan bahwa satu diagonal membagi layang-layang menjadi dua segitiga kongruen, sehingga sudut antara dua pasang sisi yang sama memiliki ukuran yang sama. Ini juga menyiratkan bahwa diagonal saling memotong tegak lurus. Layang-layang mencakup belah ketupat.

Rumus keliling dan luas segi empat

  • persegi

L=s.s=s2

k=s+s+s+s=4.s

  • persegi panjang

K=2(p+l)

L=p.l

  • jajar genjang

K=jumlahkeempatsisinya

L=a.t

  • layang-layang

K=jumlahkeempatsisinya

L=1/2(d1.d2)

  • trapesium

K=jumlahkeempatsisinya

L=1/2(atas+bawah).tinggi

  • belah ketupat

K=jumlahkeempatsisinya

L=1/2(d1.d2)

Contoh soal segi empat

persegi

diketahui sisi pada persegi adalah 5cm, tentukan:

a. luas persegi

L=s.s=s2

= 5.5

=25 cm^2


b. keliling persegi

k=s+s+s+s=4.s

=5+5+5+5

=20 cm

Segi empat kompleks

Antiparallelogram

Sebuah berpotongan sendiri segiempat disebut dengan berbagai sebuah cross-segiempat, menyeberangi segiempat, kupu-kupu segiempat atau kupu-kupu segiempat. Dalam segiempat melintang, empat "interior" sudut di kedua sisi persimpangan (dua refleks akut dan dua , semua di sebelah kiri atau semua di sebelah kanan saat gambar ditelusuri) menambahkan hingga 720 °.[3]

  • Palang trapesium (AS) atau trapezium (Persemakmuran):[4] silang segiempat di mana (seperti trapesium ) sepasang sisi yang tidak berdekatan adalah sejajar
  • Antiparalelogram : sebuah segiempat melintang di mana (seperti jajaran genjang ) setiap pasangan sisi yang tidak berdekatan memiliki panjang yang sama.
  • Crossed rectangle : antiparalelogram yang sisi-sisinya dua sisi yang berlawanan dan dua diagonal persegi panjang , karenanya memiliki sepasang sisi yang berlawanan sejajar.
  • Crossed square : kasus khusus persegi panjang bersilang di mana dua sisi berpotongan di sudut kanan.

Segmen garis khusus

Dua diagonal dari segiempat cembung adalah segmen garis yang menghubungkan titik berlawanan.

Dua bimedian dari segiempat cembung adalah segmen garis yang menghubungkan titik tengah sisi yang berlawanan. Mereka berpotongan di "vertex centroid" dari segiempat (lihat poin Luar Biasa di bawah).

Keempat maltitudes dari segiempat cembung adalah tegak lurus ke sisi melalui titik tengah sisi yang berlawanan.

Luas segi empat cembung

Ada berbagai formula umum untuk luas K dari ABCD segiempat cembung dengan sisi Templat:Nobreak.

Rumus trigonometri

Luas dapat dinyatakan dalam istilah trigonometri sebagai

K=12pqsinθ,

di mana panjang diagonal adalah p dan q dan sudut di antara mereka adalah θ.[5] Dalam kasus segiempat ortodiagonal (mis. Belah ketupat, bujur sangkar, dan layang-layang), rumus ini direduksi menjadi K=12pq karena θ adalah 90 °.

Luas ini juga dapat dinyatakan dalam istilah bimedian sebagai[6]

K=mnsinφ,

di mana panjang bimedian adalah m dan n dan sudut di antara mereka adalah φ.

Formula Bretschneider[7] mengekspresikan area dalam hal sisi dan dua sudut yang berlawanan:

K=(sa)(sb)(sc)(sd)12abcd[1+cos(A+C)]=(sa)(sb)(sc)(sd)abcd[cos2(A+C2)]

di mana sisi dalam urutan adalah a , b , c , d, di mana s adalah semikeliling, dan A dan C adalah dua (pada kenyataannya, dua) sudut yang berlawanan. Ini mengurangi rumus Brahmagupta untuk bidang segi empat siklik ketika A + C = 180 ° .

Rumus area lain dalam hal sisi dan sudut, dengan sudut C berada di antara sisi b dan c, dan A berada di antara sisi a dan d, adalah

K=12adsinA+12bcsinC.

Dalam kasus segiempat siklik, rumus terakhir menjadi K=12(ad+bc)sinA.

Dalam jajar genjang, di mana kedua pasang sisi dan sudut yang berlawanan sama, rumus ini berkurang menjadi K=absinA.

Sebagai alternatif, kita dapat menulis area dengan sisi dan sudut persimpangan θ diagonal, sepanjang sudut ini bukan 90°:[8]

K=|tanθ|4|a2+c2b2d2|.

Dalam kasus jajar genjang, rumus terakhir menjadi K=12|tanθ||a2b2|.

Formula area lain termasuk sisi a , b , c , d adalah[6]

K=14(2(a2+c2)4x2)(2(b2+d2)4x2)sinφ

di mana x adalah jarak antara titik tengah diagonal dan φ adalah sudut antara bimedian .

Rumus luas trigonometri terakhir termasuk sisi a , b , c , d dan sudut α antara a dan b adalah: Templat:Citation needed

K=12absinα+144c2d2(c2+d2a2b2+2abcosα)2,

yang juga dapat digunakan untuk bidang segi empat cekung (memiliki bagian cekung berlawanan dengan sudut α ) hanya mengubah tanda pertama + ke -.

Rumus non-trigonometri

Dua rumus berikut ini menyatakan bidang dalam hal sisi a , b , c , d, semikeliling s, dan diagonal p , q:

K=(sa)(sb)(sc)(sd)14(ac+bd+pq)(ac+bdpq),[9]
K=144p2q2(a2+c2b2d2)2.[10]

Yang pertama direduksi menjadi rumus Brahmagupta dalam kasus segi empat siklik, sejak saat itu pq = ac + bd.

Daerah tersebut juga dapat dinyatakan dalam istilah bimedian m , n dan diagonal p , q:

K=12(m+n+p)(m+np)(m+n+q)(m+nq),[11]
K=12p2q2(m2n2)2.[12]Templat:Rp

Faktanya, tiga dari empat nilai m , n , p , dan q cukup untuk penentuan area, karena pada segi empat mana pun keempat nilai tersebut dihubungkan oleh p2+q2=2(m2+n2).[13]Templat:Rp The corresponding expressions are:[14]

K=12[(m+n)2p2][p2(mn)2],

jika panjang dua bimedian dan satu diagonal diberikan, dan[14]

K=14[(p+q)24m2][4m2(pq)2],

jika panjang dua diagonal dan satu bimedian diberikan.

Rumus Vektor

Referensi

Templat:Reflist

Pranala luar

Templat:Commons category

Templat:Bangun Templat:Poligon

  1. Templat:Cite web
  2. http://www.cleavebooks.co.uk/scol/calrect.htm
  3. Templat:Cite web
  4. Templat:Cite web
  5. Harries, J. "Area of a quadrilateral," Mathematical Gazette 86, July 2002, 310–311.
  6. 6,0 6,1 Templat:Citation.
  7. R. A. Johnson, Advanced Euclidean Geometry, 2007, Dover Publ., p. 82.
  8. Mitchell, Douglas W., "The area of a quadrilateral," Mathematical Gazette 93, July 2009, 306–309.
  9. J. L. Coolidge, "A historically interesting formula for the area of a quadrilateral", American Mathematical Monthly, 46 (1939) 345–347.
  10. Templat:Cite web
  11. Archibald, R. C., "The Area of a Quadrilateral", American Mathematical Monthly, 29 (1922) pp. 29–36.
  12. Templat:Citation.
  13. Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Altshiller-Court
  14. 14,0 14,1 Josefsson, Martin (2016) ‘100.31 Heron-like formulas for quadrilaterals’, The Mathematical Gazette, 100 (549), pp. 505–508.