Daftar integral dari fungsi invers hiperbolik

Dari testwiki
Loncat ke navigasi Loncat ke pencarian

Daftar integral tak tentu (antiderivatif) dari fungsi invers hiperbolik. Untuk daftar lengkap fungsi integral, lihat Tabel integral.

Rumus integrasi invers hiperbolik sinus

arsinh(ax)dx=xarsinh(ax)a2x2+1a+C
xarsinh(ax)dx=x2arsinh(ax)2+arsinh(ax)4a2xa2x2+14a+C
x2arsinh(ax)dx=x3arsinh(ax)3(a2x22)a2x2+19a3+C
xmarsinh(ax)dx=xm+1arsinh(ax)m+1am+1xm+1a2x2+1dx(m1)
arsinh(ax)2dx=2x+xarsinh(ax)22a2x2+1arsinh(ax)a+C
arsinh(ax)ndx=xarsinh(ax)nna2x2+1arsinh(ax)n1a+n(n1)arsinh(ax)n2dx
arsinh(ax)ndx=xarsinh(ax)n+2(n+1)(n+2)+a2x2+1arsinh(ax)n+1a(n+1)+1(n+1)(n+2)arsinh(ax)n+2dx(n1,2)

Rumus integrasi invers hiperbolik kosinus

arcosh(ax)dx=xarcosh(ax)ax+1ax1a+C
xarcosh(ax)dx=x2arcosh(ax)2arcosh(ax)4a2xax+1ax14a+C
x2arcosh(ax)dx=x3arcosh(ax)3(a2x2+2)ax+1ax19a3+C
xmarcosh(ax)dx=xm+1arcosh(ax)m+1am+1xm+1ax+1ax1dx(m1)
arcosh(ax)2dx=2x+xarcosh(ax)22ax+1ax1arcosh(ax)a+C
arcosh(ax)ndx=xarcosh(ax)nnax+1ax1arcosh(ax)n1a+n(n1)arcosh(ax)n2dx
arcosh(ax)ndx=xarcosh(ax)n+2(n+1)(n+2)+ax+1ax1arcosh(ax)n+1a(n+1)+1(n+1)(n+2)arcosh(ax)n+2dx(n1,2)

Rumus integrasi invers hiperbolik tangen

artanh(ax)dx=xartanh(ax)+ln(1a2x2)2a+C
xartanh(ax)dx=x2artanh(ax)2artanh(ax)2a2+x2a+C
x2artanh(ax)dx=x3artanh(ax)3+ln(1a2x2)6a3+x26a+C
xmartanh(ax)dx=xm+1artanh(ax)m+1am+1xm+11a2x2dx(m1)

Rumus integrasi invers hiperbolik kotangen

arcoth(ax)dx=xarcoth(ax)+ln(a2x21)2a+C
xarcoth(ax)dx=x2arcoth(ax)2arcoth(ax)2a2+x2a+C
x2arcoth(ax)dx=x3arcoth(ax)3+ln(a2x21)6a3+x26a+C
xmarcoth(ax)dx=xm+1arcoth(ax)m+1+am+1xm+1a2x21dx(m1)

Rumus integrasi invers hiperbolik sekan

arsech(ax)dx=xarsech(ax)2aarctan1ax1+ax+C
xarsech(ax)dx=x2arsech(ax)2(1+ax)2a21ax1+ax+C
x2arsech(ax)dx=x3arsech(ax)313a3arctan1ax1+axx(1+ax)6a21ax1+ax+C
xmarsech(ax)dx=xm+1arsech(ax)m+1+1m+1xm(1+ax)1ax1+axdx(m1)

Rumus integrasi invers hiperbolik kosekan

arcsch(ax)dx=xarcsch(ax)+1aarcoth1a2x2+1+C
xarcsch(ax)dx=x2arcsch(ax)2+x2a1a2x2+1+C
x2arcsch(ax)dx=x3arcsch(ax)316a3arcoth1a2x2+1+x26a1a2x2+1+C
xmarcsch(ax)dx=xm+1arcsch(ax)m+1+1a(m+1)xm11a2x2+1dx(m1)

Templat:Daftar integral