Daftar integral dari fungsi hiperbolik

Dari testwiki
Loncat ke navigasi Loncat ke pencarian

Daftar integral (antiderivatif) dari fungsi hiperbolik. Untuk daftar lengkap fungsi integral, lihat Tabel integral.

Dalam semua rumus, konstanta a diasumsikan bukan nol, dan C melambangkan konstanta integrasi.

Integral melibatkan hanya fungsi hiperbolik sinus

sinhaxdx=1acoshax+C

sinh2axdx=14asinh2axx2+C

sinhnaxdx=1ansinhn1axcoshaxn1nsinhn2axdx(for n>0)

juga: sinhnaxdx=1a(n+1)sinhn+1axcoshaxn+2n+1sinhn+2axdx(for n<0n1)

dxsinhax=1aln|tanhax2|+C

juga: dxsinhax=1aln|coshax1sinhax|+C
dxsinhax=1aln|sinhaxcoshax+1|+C
dxsinhax=12aln|coshax1coshax+1|+C

dxsinhnax=coshaxa(n1)sinhn1axn2n1dxsinhn2ax(for n1)

xsinhaxdx=1axcoshax1a2sinhax+C

sinhaxsinhbxdx=1a2b2(asinhbxcoshaxbcoshbxsinhax)+C(for a2b2)

Integral melibatkan hanya fungsi hiperbolik kosinus

coshaxdx=1asinhax+C

cosh2axdx=14asinh2ax+x2+C

coshnaxdx=1ansinhaxcoshn1ax+n1ncoshn2axdx(for n>0)

juga: coshnaxdx=1a(n+1)sinhaxcoshn+1ax+n+2n+1coshn+2axdx(for n<0n1)

dxcoshax=2aarctaneax+C

juga: dxcoshax=1aarctan(sinhax)+C

dxcoshnax=sinhaxa(n1)coshn1ax+n2n1dxcoshn2ax(for n1)

xcoshaxdx=1axsinhax1a2coshax+C

x2coshaxdx=2xcoshaxa2+(x2a+2a3)sinhax+C

coshaxcoshbxdx=1a2b2(asinhaxcoshbxbsinhbxcoshax)+C(for a2b2)

Integral lain-lain

Integral fungsi hiperbolik tangen, kotangen, sekan, kosekan

tanhxdx=lncoshx+C

tanh2axdx=xtanhaxa+C

tanhnaxdx=1a(n1)tanhn1ax+tanhn2axdx(for n1)

cothxdx=ln|sinhx|+C, for x0 cothnaxdx=1a(n1)cothn1ax+cothn2axdx(for n1)

sechxdx=arctan(sinhx)+C cschxdx=ln|tanhx2|+C, for x0

Integral melibatkan fungsi hiperbolik sinus dan kosinus

coshaxsinhbxdx=1a2b2(asinhaxsinhbxbcoshaxcoshbx)+C(for a2b2)

coshnaxsinhmaxdx=coshn1axa(nm)sinhm1ax+n1nmcoshn2axsinhmaxdx(for mn)

juga: coshnaxsinhmaxdx=coshn+1axa(m1)sinhm1ax+nm+2m1coshnaxsinhm2axdx(for m1)
coshnaxsinhmaxdx=coshn1axa(m1)sinhm1ax+n1m1coshn2axsinhm2axdx(for m1)
sinhmaxcoshnaxdx=sinhm1axa(mn)coshn1ax+m1nmsinhm2axcoshnaxdx(for mn)
sinhmaxcoshnaxdx=sinhm+1axa(n1)coshn1ax+mn+2n1sinhmaxcoshn2axdx(for n1)
sinhmaxcoshnaxdx=sinhm1axa(n1)coshn1ax+m1n1sinhm2axcoshn2axdx(for n1)

Integral melibatkan fungsi hiperbolik dan trigonometri

sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)ca2+c2sinh(ax+b)cos(cx+d)+C

sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)+C

cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)ca2+c2cosh(ax+b)cos(cx+d)+C

cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)+C

Templat:Daftar integral