Daftar integral dari fungsi invers trigonometri

Dari testwiki
Revisi sejak 30 Mei 2023 11.17 oleh imported>Akuindo (Rumus integrasi fungsi arcsekan)
(beda) ← Revisi sebelumnya | Revisi terkini (beda) | Revisi selanjutnya → (beda)
Loncat ke navigasi Loncat ke pencarian

Daftar integral (antiderivatif) dari ekspresi yang melibatkan fungsi invers trigonometri. Untuk daftar lengkap rumus integral, lihat tabel integral.

  • Fungsi invers (= "fungsi kebalikan") trigonometri juga dikenal sebagai "fungsi arc" ("arc functions").
  • C digunakan untuk melambangkan konstanta integrasi arbitrari yang hanya dapat ditentukan jika nilai integral pada satu titik tertentu telah diketahui. Jadi setiap fungsi mempunyai antiderivatif yang tak terhingga banyaknya.
  • Ada tiga notasi umum untuk fungsi-fungsi invers trigonometri. Fungsi arcsinus, misalnya, dapat ditulis sebagai sin−1, asin, atau, pada halaman ini, arcsin.
  • Untuk setiap rumus integrasi fungsi invers trigonometri di bawah ini ada rumus yang bersangkutan dalam daftar integral dari fungsi invers hiperbolik.

Rumus integrasi fungsi arcsinus

arcsin(x)dx=xarcsin(x)+1x2+C
arcsin(ax)dx=xarcsin(ax)+1a2x2a+C
xarcsin(ax)dx=x2arcsin(ax)2arcsin(ax)4a2+x1a2x24a+C
x2arcsin(ax)dx=x3arcsin(ax)3+(a2x2+2)1a2x29a3+C
xmarcsin(ax)dx=xm+1arcsin(ax)m+1am+1xm+11a2x2dx(m1)
arcsin(ax)2dx=2x+xarcsin(ax)2+21a2x2arcsin(ax)a+C
arcsin(ax)ndx=xarcsin(ax)n+n1a2x2arcsin(ax)n1an(n1)arcsin(ax)n2dx
arcsin(ax)ndx=xarcsin(ax)n+2(n+1)(n+2)+1a2x2arcsin(ax)n+1a(n+1)1(n+1)(n+2)arcsin(ax)n+2dx(n1,2)

Rumus integrasi fungsi arckosinus

arccos(x)dx=xarccos(x)1x2+C
arccos(ax)dx=xarccos(ax)1a2x2a+C
xarccos(ax)dx=x2arccos(ax)2arccos(ax)4a2x1a2x24a+C
x2arccos(ax)dx=x3arccos(ax)3(a2x2+2)1a2x29a3+C
xmarccos(ax)dx=xm+1arccos(ax)m+1+am+1xm+11a2x2dx(m1)
arccos(ax)2dx=2x+xarccos(ax)221a2x2arccos(ax)a+C
arccos(ax)ndx=xarccos(ax)nn1a2x2arccos(ax)n1an(n1)arccos(ax)n2dx
arccos(ax)ndx=xarccos(ax)n+2(n+1)(n+2)1a2x2arccos(ax)n+1a(n+1)1(n+1)(n+2)arccos(ax)n+2dx(n1,2)

Rumus integrasi fungsi arctangen

arctan(x)dx=xarctan(x)ln(x2+1)2+C
arctan(ax)dx=xarctan(ax)ln(a2x2+1)2a+C
xarctan(ax)dx=x2arctan(ax)2+arctan(ax)2a2x2a+C
x2arctan(ax)dx=x3arctan(ax)3+ln(a2x2+1)6a3x26a+C
xmarctan(ax)dx=xm+1arctan(ax)m+1am+1xm+1a2x2+1dx(m1)

Rumus integrasi fungsi arckotangen

arccot(x)dx=xarccot(x)+ln(x2+1)2+C
arccot(ax)dx=xarccot(ax)+ln(a2x2+1)2a+C
xarccot(ax)dx=x2arccot(ax)2+arccot(ax)2a2+x2a+C
x2arccot(ax)dx=x3arccot(ax)3ln(a2x2+1)6a3+x26a+C
xmarccot(ax)dx=xm+1arccot(ax)m+1+am+1xm+1a2x2+1dx(m1)

Rumus integrasi fungsi arcsekan

arcsec(x)dx=xarcsec(x)ln(|x|+x21)+C=xarcsec(x)arcosh|x|+C
arcsec(ax)dx=xarcsec(ax)1aarcosh|ax|+C
xarcsec(ax)dx=x2arcsec(ax)2x2a11a2x2+C
x2arcsec(ax)dx=x3arcsec(ax)316a3arctanh11a2x2x26a11a2x2+C
xmarcsec(ax)dx=xm+1arcsec(ax)m+11a(m+1)xm111a2x2dx(m1)

Rumus integrasi fungsi arckosekan

arccsc(x)dx=xarccsc(x)+ln|x+x21|+C=xarccsc(x)+arccosh(x)+C
arccsc(ax)dx=xarccsc(ax)+1aarctanh11a2x2+C
xarccsc(ax)dx=x2arccsc(ax)2+x2a11a2x2+C
x2arccsc(ax)dx=x3arccsc(ax)3+16a3arctanh11a2x2+x26a11a2x2+C
xmarccsc(ax)dx=xm+1arccsc(ax)m+1+1a(m+1)xm111a2x2dx(m1)

Templat:Daftar integral