Berkas:Heat.gif

Dari testwiki
Loncat ke navigasi Loncat ke pencarian
Ukuran asli (1.200 × 954 piksel, ukuran berkas: 2,66 MB, tipe MIME: image/gif, melingkar, 30 frame, 3,0 d)
Catatan: Karena keterbatasan teknis, cuplikan gambar GIF beresolusi tinggi seperti yang satu ini tidak akan teranimasikan.

Berkas ini berasal dari Wikimedia Commons dan mungkin digunakan oleh proyek-proyek lain. Deskripsi dari halaman deskripsinya ditunjukkan di bawah ini.

Ringkasan

  GIF Grafik ini dibuat menggunakan Python
Deskripsi
English: Illustration of the Heat equation with a crescent moon as initial condition.
Tanggal
Sumber Karya sendiri
Pembuat Nicoguaro. Based on File:Heat eqn.gif by en:User:Oleg Alexandrov
Versi lainnya
Kode sumber
InfoField

Python code

"""
Illustration of the heat equation

Solve the heat equation using finite differences and Forward Euler.

Based on: https://commons.wikimedia.org/wiki/File:Heat_eqn.gif
"""

from __future__ import division, print_function
import numpy as np
from mayavi import mlab
import subprocess

path_to_convert = "C:\Program Files\ImageMagick-6.9.3\convert.exe"

def step_function(N, scale, X, Y, shape="crescent"):
    """Function that is 1 on a set and 0 outside of it"""
    shapes = ["crescent", "cylinder", "hexagon", "superquadric", "smiley"]
    
    if shape not in shapes:
        shape = "crescent"

    if shape == "cylinder":
        Z = np.ones_like(X)
        Z[X**2 + Y**2 < 0.5] = 0
        Z[X**2 + Y**2 > 2] = 0

    if shape == "superquadric":
        Z = np.ones_like(X)
        Z[np.abs(X)**0.5 + np.abs(Y)**0.5 > 1.5] = 0

    if shape == "hexagon":
        Z = np.ones_like(X)
        hexa = 2*np.abs(X) + np.abs(X - Y*np.sqrt(3)) +\
            np.abs(X + Y*np.sqrt(3))
        Z[hexa > 6] = 0

    if shape == "crescent":
        c = 2
        d = -1
        e = 1
        f = 0.5
        k = 1.2
        shift = 10        
        Z = (c**2 - (X/e - d)**2 - (Y/f)**2)**2 + k*(c + d - X/e)**3 - shift
        Z = 1 - np.maximum(np.sign(Z), 0)
        
    if shape == "smiley":
        Z = np.ones_like(X)
        fac = 1.2
        x_eye = 0.5
        y_eye = 0.4
        bicorn = fac**2*(Y + 0.3)**2*(1 - fac**2*X**2) -\
                (fac**2*X**2 - 2*fac*(Y + 0.3) - 1)**2
        left_eye = (X + x_eye)**2/0.1 + (Y - y_eye)**2/0.4 - 1
        right_eye = (X - x_eye)**2/0.1 + (Y - y_eye)**2/0.4 - 1
        Z[X**2 + Y**2 > 2] = 0
        Z[bicorn > 0] = 0
        Z[left_eye < 0] = 0
        Z[right_eye < 0] = 0

    Z = scale * Z
    return Z

def data_gen(num):
    # Solve the heat equation with zero boundary conditions
    for cont in range(ntime_anim):
        Z[1:N-1, 1:N-1] = Z[1:N-1, 1:N-1] + dt*(Z[2:N, 1:N-1] +
                             Z[0:N-2, 1:N-1] + Z[1:N-1, 0:N-2] +
                             Z[1:N-1, 2:N] - 4*Z[1:N-1, 1:N-1])/dx**2

    surf = mlab.surf(X, Y, Z, colormap='autumn', warp_scale=1)
    # Change the visualization parameters.
    surf.actor.property.interpolation = 'phong'
    surf.actor.property.specular = 0.3
    surf.actor.property.specular_power = 20
    surf.module_manager.scalar_lut_manager.reverse_lut = True
    surf.module_manager.scalar_lut_manager.data_range = np.array([ 0.,  scale])

    return surf

N = 500  # Grid points
L = 2.5  # Box size
X, Y = np.mgrid[-L:L:N*1j, -L:L:N*1j]
scale = 2
Z = step_function(N, scale, X, Y, shape="crescent")
CFL = 0.125
dx = X[1, 0] - X[0, 0]
dy = dx
dt = CFL*dx**2
end_time = 0.05
time = np.arange(0, end_time, dt)
nframes = 50
ntime = time.shape[0]
ntime_anim = int(ntime/nframes)

#%% Plot frames
fname = "heat"
bgcolor = (1, 1, 1)
fig = mlab.figure(size=(1200, 1000), bgcolor=bgcolor)
fig.scene.camera.azimuth(180)
mlab.get_engine()
engine = mlab.get_engine()
scene = engine.scenes[0]
for cont in range(nframes):
    mlab.clf()
    surf = data_gen(cont)
    scene.scene.camera.position = [-8, -8,  7]
    scene.scene.camera.clipping_range = [7, 22]
    scene.scene.camera.focal_point = [0, 0, 1]
    print(cont)
    mlab.savefig("{}_{n:02d}.png".format(fname, n=cont))

#%% Generate video
args = [path_to_convert, "-delay", "10", "-loop" , "0", fname + "_*.png",
        fname + ".gif"]
subprocess.call(args, shell=True)
subprocess.call(["del", "/Q", fname + "*.png"], shell=True)
print("Done!")

Lisensi

Saya, pemilik hak cipta dari karya ini, dengan ini menerbitkan berkas ini di bawah ketentuan berikut:
w:id:Creative Commons
atribusi
Berkas ini dilisensikan di bawah lisensi Creative Commons Atribusi 4.0 Internasional.
Anda diizinkan:
  • untuk berbagi – untuk menyalin, mendistribusikan dan memindahkan karya ini
  • untuk menggubah – untuk mengadaptasi karya ini
Berdasarkan ketentuan berikut:
  • atribusi – Anda harus mencantumkan atribusi yang sesuai, memberikan pranala ke lisensi, dan memberi tahu bila ada perubahan. Anda dapat melakukannya melalui cara yang Anda inginkan, namun tidak menyatakan bahwa pemberi lisensi mendukung Anda atau penggunaan Anda.

Captions

Add a one-line explanation of what this file represents
Animation of the heat equation with a crescent moon as initial condition.

Items portrayed in this file

menggambarkan

16 Mei 2017

image/gif

2.787.307 Bita

3 detik

954 piksel

1.200 piksel

checksum Inggris

07900fef474dafbc79c213cb7fda9dbd859e8d06

Riwayat berkas

Klik pada tanggal/waktu untuk melihat berkas ini pada saat tersebut.

Tanggal/WaktuMiniaturDimensiPenggunaKomentar
terkini20 Mei 2017 04.12Miniatur versi sejak 20 Mei 2017 04.121.200 × 954 (2,66 MB)wikimediacommons>NicoguaroUser created page with UploadWizard

Halaman berikut menggunakan berkas ini: