MixColumns Rijndael

Dari testwiki
Revisi sejak 26 Januari 2025 09.36 oleh imported>HsfBot (top: clean up)
(beda) ← Revisi sebelumnya | Revisi terkini (beda) | Revisi selanjutnya → (beda)
Loncat ke navigasi Loncat ke pencarian

Langkah Templat:Mono dan langkah Templat:Mono adalah sumber penghamburan utama dalam penyandian Rijndael. Tiap kolom dianggap sebagai suku banyak berderajat empat b(x)=b3x3+b2x2+b1x+b0 yang suku-sukunya berada dalam GF(28).

Tiap kolom dikali dengan suku banyak tetap a(x)=3x3+x2+x+2 modulus x4+1. Inversi suku banyaknya adalah a1(x)=11x3+13x2+9x+14.

MixColumns

Operasi ini terdiri dari perkalian modulus dua suku banyak berderajat empat yang koefisiennya ada dalam GF(28). Pembagi yang dipakai dalam operasi ini adalah x4+1.

Koefisien suku banyak pertama didefinisikan sebagai kolom status [b3b2b1b0] yang berisi empat bita. Tiap bita adalah koefisien dari suku banyak tersebut.

b(x)=b3x3+b2x2+b1x+b0

Suku banyak kedua adalah suku banyak tetap a(x)=3x3+x2+x+2. Koefisiennya juga ada dalam GF(28). Inversinya adalah a1(x)=11x3+13x2+9x+14.

Dalam halaman ini, kita definisikan beberapa notasi berikut:

berarti perkalian modulus x4+1.
berarti pertambahan dalam GF(28).
berarti perkalian dalam GF(28).

Pertambahan dalam GF(28) memiliki sifat berikut:

(a3x3+a2x2+a1x+a0)+(b3x3+b2x2+b1x+b0)=(a3b3)x3+(a2b2)x2+(a1b1)x+(a0b0)

Pembuktian bentuk matriks

Suku banyak a(x)=3x3+x2+x+2 akan dinyatakan sebagai a(x)=a3x3+a2x2+a1x+a0.

Perkalian suku banyak

a(x)b(x)=c(x)=(a3x3+a2x2+a1x+a0)(b3x3+b2x2+b1x+b0)=c6x6+c5x5+c4x4+c3x3+c2x2+c1x+c0

dengan

c0=a0b0c1=a1b0a0b1c2=a2b0a1b1a0b2c3=a3b0a2b1a1b2a0b3c4=a3b1a2b2a1b3c5=a3b2a2b3c6=a3b3

Reduksi modulus

Hasil c(x) adalah suku banyak berderajat tujuh sehingga harus direduksi menjadi kata empat bita. Hal itu dilakukan dengan melakukan perkalian dengan modulus x4+1.

Bila kita melakukan perkalian modulus suku banyak, kita bisa lihat bahwa

x6mod(x4+1)=x2=x2 dalam GF(28)x5mod(x4+1)=x=x dalam GF(28)x4mod(x4+1)=1=1 dalam GF(28)

Secara umum, kita bisa nyatakan bahwa ximod(x4+1)=ximod4.

Jadi,

a(x)b(x)=c(x)mod(x4+1)=(c6x6+c5x5+c4x4+c3x3+c2x2+c1x+c0)mod(x4+1)=c6x6mod4+c5x5mod4+c4x4mod4+c3x3mod4+c2x2mod4+c1x1mod4+c0x0mod4=c6x2+c5x+c4+c3x3+c2x2+c1x+c0=c3x3+(c2c6)x2+(c1c5)x+c0c4=d3x3+d2x2+d1x+d0

dengan

d0=c0c4d1=c1c5d2=c2c6d3=c3

Bentuk matriks

Koefisien d3, d2, d1, dan d0 dapat dinyatakan sebagai berikut:

d0=a0b0a3b1a2b2a1b3d1=a1b0a0b1a3b2a2b3d2=a2b0a1b1a0b2a3b3d3=a3b0a2b1a1b2a0b3

Ketika kita ganti koefisien a(x) dengan tetapan [3112] yang dipakai oleh penyandian ini, kita dapatkan hasil berikut:

d0=2b03b11b21b3d1=1b02b13b21b3d2=1b01b12b23b3d3=3b01b11b22b3

Hal ini menunjukkan bahwa operasi ini mirip dengan sandi Hill. Ia dapat digambarkan sebagai perkalian matriks berikut:

[d0d1d2d3]=[2311123111233112][b0b1b2b3]

InverseMixColumns

Operasi Templat:Mono memiliki inversi berikut (bilangan dalam desimal).

[b0b1b2b3]=[1411139914111313914111113914][d0d1d2d3]

atau

b0=14d011d113d29d3b1=9d014d111d213d3b2=13d09d114d211d3b3=11d013d19d214d3

Contoh implementasi

Operasi ini dapat disederhanakan dalam implementasinya dengan mengganti perkalian dengan dua dengan geseran tunggal dan XOR bersyarat serta mengganti perkalian dengan tiga dengan perkalian dengan dua yang digabung dengan XOR. Berikut contoh implementasi dalam bahasa C.

void gmix_column(unsigned char *r) {
	unsigned char a[4];
	unsigned char b[4];
	unsigned char c;
	unsigned char h;
	/* Larik a adalah salinan dari larik r.
	 * Larik b adalah larik a yang dikali dua dalam medan berhingga Rijndael.
	 * a[n] ^ b[n] adalah perkalian dengan tiga dalam medan berhingga Rijndael.
	 */
	for (c = 0; c < 4; c++) {
		a[c] = r[c];
		/* h adalah 0xff jika bit tinggi r[c] diatur; nilainya 0 jika tidak */
		h = (unsigned char) ((signed char) r[c] >> 7); /* geseran aritmetika kanan */
		b[c] = r[c] << 1; /* secara tersirat menghapus bit tinggi karena b[c] adalah char 8 bit,
		                   * maka di-XOR dengan 0x1B dan bukan 0x11B pada baris selanjutnya */
		b[c] ^= 0x1B & h; /* medan berhingga Rijndael */
	}
	r[0] = b[0] ^ a[3] ^ a[2] ^ b[1] ^ a[1]; /* 2 * a0 + a3 + a2 + 3 * a1 */
	r[1] = b[1] ^ a[0] ^ a[3] ^ b[2] ^ a[2]; /* 2 * a1 + a0 + a3 + 3 * a2 */
	r[2] = b[2] ^ a[1] ^ a[0] ^ b[3] ^ a[3]; /* 2 * a2 + a1 + a0 + 3 * a3 */
	r[3] = b[3] ^ a[2] ^ a[1] ^ b[0] ^ a[0]; /* 2 * a3 + a2 + a1 + 3 * a0 */
}

Vektor uji untuk MixColumns

Heksadesimal Desimal
Sebelum Setelah Sebelum Setelah
db 13 53 45 8e 4d a1 bc 219 19 83 69 142 77 161 188
f2 0a 22 5c 9f dc 58 9d 242 10 34 92 159 220 88 157
01 01 01 01 01 01 01 01 1 1 1 1 1 1 1 1
c6 c6 c6 c6 c6 c6 c6 c6 198 198 198 198 198 198 198 198
d4 d4 d4 d5 d5 d5 d7 d6 212 212 212 213 213 213 215 214
2d 26 31 4c 4d 7e bd f8 45 38 49 76 77 126 189 248

Daftar pustaka