Ruang terhubung

Dari testwiki
Revisi sejak 2 Januari 2023 06.44 oleh imported>Dedhert.Jr (lang-en dipakai untuk lead saja)
(beda) ← Revisi sebelumnya | Revisi terkini (beda) | Revisi selanjutnya → (beda)
Loncat ke navigasi Loncat ke pencarian

Templat:Multiple image

Dalam topologi dan cabang-cabang matematika yang terkait, ruang terhubung (Templat:Lang-en) adalah ruang topologi yang tidak dapat dinyatakan sebagai gabungan dari dua subhimpunan tak kosong yang terlepas atau lebih. Keterhubungan adalah salah satu sifat topologi utama yang digunakan untuk membedakan ruang topologi.

Subhimpunan dari ruang topologi X adalah himpunan terhubung jika ia adalah ruang yang terhubung ketika dipandang sebagai subruang dari X.

Ada beberapa syarat yang terkait tetapi lebih kuat, seperti keterhubungan lintasan (path connectedness), ruang terhubung sederhana (simply connected), dan ruang terhubung-n (n-connected). Gagasan terkait lainnya adalah ruang terhubung lokal (locally connected), yang tidak menyiratkan dari sifat keterhubungan.

Definisi formal

Sebuah ruang topologi X dikatakan Templat:Visible anchor jika X adalah gabungan dari dua himpunan terbuka takkosong saling lepas. Hal ini berlaku untuk sebaliknya, X dikatakan terhubung jika X bukan merupakan gabungan dari dua himpunan tersebut. Selain itu, sebuah subhimpunan dari ruang topologi disebut terhubung jika ia terhubung terhadap topologi subruangnya.

Berikut adalah syarat-syarat yang mirip dengan definisi dari ruang topologi X:

  1. X disebut terhubung, dalam artian bahwa X tidak dapat dibagi menjadi dua himpunan terbuka takkosong yang saling lepas.
  2. Subhimpunan dari X yang merupakan himpunan terbuka dan tertutup hanyalah X dan himpunan kosong.
  3. Subhimpunan dari X dengan batas kosong hanyalah X dan himpunan kosong.
  4. X tidak dapat ditulis sebagai gabungan dari dua himpunan terpisah takkosong.
  5. Semua fungsi yang kontinu dari X ke {0,1} bernilai konstan, dengan {0,1} melambangkan ruang dua titik yang mempunyai topologi diskret.

Menurut sejarah, formulasi modern dari gagasan keterhubungan tersebut, yang mengatakan bahwa X tidak dapat dibagi menjadi dua himpunan terpisah, merupakan formulasi yang pertama kali ditemukan secara pisah oleh N.J. Lennes, Frigyes Riesz, dan Felix Hausdorff pada awal abad ke-20.[1]

Contoh

  • Interval tertutup [0,2] dalam topologi ruang bagian standar merupakan himpunan terhubung; walaupun hal tersebut dapat, sebagai contoh, ditulis sebagai gabungan dari [0,1) dan [1,2] serta himpunan kedua tidak terbuka dalam topologi yang dipilih dari [0,2].
  • Gabungan dari [0,1) dan (1,2] adalah himpunan tak terhubung, dan kedua interval tersebut terbuka di ruang topologi standar [0,1)(1,2].
  • (0,1){3} merupakan himpunan tak terhubung.
  • Sebuah subhimpunan konveks dari n disebut terhubung, atau lebih tepatnya terhubung sederhana.
  • Sebuah bidang Euklides yang tidak memuat titik asal, (0,0), disebut terhubung, tetapi sisanya tidak terhubung. Ruang Euklides dimensi tiga tanpa ada titik asal disebut terhubung, dan bahkan disebut terhubung sederhana. Sebaliknya, ruang Euklides dimensi satu tanpa ada titik asal disebut tidak terhubung.

Referensi

Bacaan lebih lanjut